4.1 Review

Seizure-like afterdischarges simulated in a model neuron

期刊

JOURNAL OF COMPUTATIONAL NEUROSCIENCE
卷 22, 期 2, 页码 105-128

出版社

SPRINGER
DOI: 10.1007/s10827-006-0001-y

关键词

epilepsy; ion channels; persistent current; ion distribution; potassium concentration; firing pattern

向作者/读者索取更多资源

To explore non-synaptic mechanisms in paroxysmal discharges, we used a computer model of a simplified hippocampal pyramidal cell, surrounded by interstitial space and a glial-endothelial buffer system. Ion channels for Na+, K+, Ca2+ and Cl- (,) ion antiport 3Na/Ca, and active ion pumps were represented in the neuron membrane. The glia had leak conductances and an ion pump. Fluxes, concentration changes and cell swelling were computed. The neuron was stimulated by injecting current. Afterdischarge (AD) followed stimulation if depolarization due to rising interstitial K+ concentration ([K+](o)) activated persistent Na+ current (I (Na,P)). AD was either simple or self-regenerating; either regular (tonic) or burst-type (clonic); and always self-limiting. Self-regenerating AD required sufficient I (Na,P) to ensure re-excitation. Burst firing depended on activation of dendritic Ca2+ currents and Ca-dependent K+ current. Varying glial buffer function influenced [K+](o) accumulation and afterdischarge duration. Variations in Na+ and K+ currents influenced the threshold and the duration of AD. The data show that high [K+](o) and intrinsic membrane currents can produce the feedback of self-regenerating afterdischarges without synaptic input. The simulated discharge resembles neuron behavior during paroxysmal firing in living brain tissue.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据