4.4 Article

Effective behavior of solitary waves over random topography

期刊

MULTISCALE MODELING & SIMULATION
卷 6, 期 3, 页码 995-1025

出版社

SIAM PUBLICATIONS
DOI: 10.1137/060676064

关键词

nonlinear waves; water waves; random media; solitons

向作者/读者索取更多资源

The deformation of a nonlinear pulse traveling in a dispersive random medium can be studied with asymptotic analysis based on separation of scales when the propagation distance is large compared to the correlation length of the random medium. We consider shallow water waves with a spatially random depth. We use a formulation in terms of a terrain-following Boussinesq system. We compute the effective evolution equation for the front pulse which can be written as a dissipative Kortweg-de Vries equation. We study the soliton dynamics driven by this system. We show, both theoretically and numerically, that a solitary wave is more robust than a linear wave in the early steps of the propagation. However, it eventually decays much faster after a critical distance corresponding to the loss of about half of its initial amplitude. We also perform an asymptotic analysis for a class of random bottom topographies. A universal behavior is captured through the asymptotic analysis of the metric term for the corresponding change to terrain-following coordinates. Within this class we characterize the effective height for highly disordered topographies. The probabilistic asymptotic results are illustrated by performing Monte Carlo simulations with a Schwarz-Christoffel Toolbox.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据