4.5 Article

In vivo Role of Cytochrome P450 2E1 and Glutathione-S-Transferase Activity for Acrylamide Toxicokinetics in Humans

期刊

CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION
卷 18, 期 2, 页码 433-443

出版社

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1055-9965.EPI-08-0832

关键词

-

资金

  1. German Research Council [TO 413/2-1]
  2. German Federal Institute for Risk Assessment

向作者/读者索取更多资源

Acrylamide, a potential food carcinogen in humans, is biotransformed to the epoxide glycidamide in vivo. Both acrylamide and glycidamide are conjugated with glutathione, possibly via glutathione-S-transferases (GST), and bind covalently to proteins and nucleic acids. We investigated acrylamide toxicokinetics in 16 healthy volunteers in a four-period change-over trial and evaluated the respective role of cytochrome P450 2E1 (CYP2E1) and GSTs. Participants ingested self-prepared potato chips containing acrylamide (1 mg) without comedication, after CYP2E1 inhibition (500 mg disulfiram, single dose) or induction (48 g/d ethanol for 1 week), and were phenotyped for CYP2E1 with chlorzoxazone (250 mg, single dose). Unchanged acrylamide and the mercapturic acids N-acetyl-S-(2-carbamoylethyl)-cysteine (AAMA) and N-acetyl-S-(2-hydroxy-2-carbamoylethyl)-cysteine (GAMA) accounted for urinary excretion [geometric mean (percent coefficient of variation)] of 2.9% (42), 65% (23), and 1.7% (65) of the acrylamide dose in the reference period. Hemoglobin adducts increased clearly following the acrylamide test-meal. The cumulative amounts of acrylamide, AAMA, and GAMA excreted and increases in AA adducts changed significantly during CYP2E1 blockade [point estimate (90% confidence interval)] to the 1.34-fold (1.14-1.58), 1.18-fold (1.02-1.36), 0.44-fold (0.31-0.61), and 1.08-fold (1.02-1.15) of the reference period, respectively, but were not changed significantly during moderate CYP2E1 induction. Individual baseline CYP2E1 activity, CYP2E1*6, GSTP1 313A > G and 341T > C single nucleotide polymorphisms, and GSTM1- and GSTT1-null genotypes had no major effect on acrylamide disposition. The changes in acrylamide toxicokinetics upon CYP2E1 blockade provide evidence that CYP2E1 is a major but not the only enzyme mediating acrylamide epoxidation in vivo to glycidamide in humans. No obvious genetic risks or protective factors in xenobiotic-metabolizing enzymes could be determined for exposed subjects. (Cancer Epidemiol Biomarkers Prev 2009;18(2):433-43)

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据