4.0 Article

Two-photon microscopy of vital murine elastic and muscular arteries - Combined structural and functional imaging with subcellular resolution

期刊

JOURNAL OF VASCULAR RESEARCH
卷 44, 期 2, 页码 87-98

出版社

KARGER
DOI: 10.1159/000098259

关键词

arterial wall; endothelial glycocalyx; extracellular matrix; geometric deformations; multiphoton excited fluorescence; nucleus; second-harmonic generation

向作者/读者索取更多资源

Understanding vascular pathologies requires insight in the structure and function, and, hence, an imaging technique combining subcellular resolution, large penetration depth, and optical sectioning. We evaluated the applicability of two-photon laser-scanning microscopy (TPLSM) in large elastic and small muscular arteries under physiological conditions. Elastic (carotid) and muscular (uterine, mesenteric) arteries of C57BL/6 mice were mounted in a perfusion chamber. TPLSM was used to assess the viability of arteries and to visualize the structural components elastin, collagen, nuclei, and endothelial glycocalyx (EG). Functionality was determined using diameter changes in response to noradrenaline and acetylcholine. Viability and functionality were maintained up to 4 h, enabling the assessment of structure-function relationships. Structural vessel wall components differed between elastic and muscular arteries: size (1.3 vs. 2.1 mu m) and density (0.045 vs. 0.57 mu m(-2)) of internal elastic lamina fenestrae, smooth muscle cell density (3.50 vs. 1.53 mu m(-3)), number of elastic laminae (3 vs. 2), and adventitial collagen structure (tortuous vs. straight). EG in elastic teries was 4.5 mu m thick, covering 66% of the endothelial surface. TPLSM enables visualization and quantification of subcellular structures in vital and functional elastic and muscular murine arteries, allowing unraveling of structure-function relationships in healthy and diseased arteries. Copyright (c) 2007 S. Karger AG, Basel

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据