4.5 Article

The measurement calculus

期刊

JOURNAL OF THE ACM
卷 54, 期 2, 页码 -

出版社

ASSOC COMPUTING MACHINERY
DOI: 10.1145/1219092.1219096

关键词

languages; standardization; theory; models for quantum computing; quantum programming languages; term rewriting; normalization; measurement-based quantum computing; teleportation-based quantum computing

向作者/读者索取更多资源

Measurement-based quantum computation has emerged from the physics community as a new approach to quantum computation where the notion of measurement is the main driving force of computation. This is in contrast with the more traditional circuit model that is based on unitary operations. Among measurement-based quantum computation methods, the recently introduced one-way quantum computer [Raussendorf and Briegel 2001] stands out as fundamental. We develop a rigorous mathematical model underlying the one-way quantum computer and present a concrete syntax and operational semantics for programs, which we call patterns, and an algebra of these patterns derived from a denotational semantics. More importantly, we present a calculus for reasoning locally and compositionally about these patterns. We present a rewrite theory and prove a general standardization theorem which allows all patterns to be put in a semantically equivalent standard form. Standardization has far-reaching consequences: a new physical architecture based on performing all the entanglement in the beginning, parallelization by exposing the dependency structure of measurements and expressiveness theorems. Furthermore we formalize several other measurement-based models, for example, Teleportation, Phase and Pauli models and present compositional embeddings of them into and from the one-way model. This allows us to transfer all the theory we develop for the one-way model to these models. This shows that the framework we have developed has a general impact on measurement-based computation and is not just particular to the one-way quantum computer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据