4.1 Review

Cdt1 degradation to prevent DNA re-replication: conserved and non-conserved pathways

期刊

CELL DIVISION
卷 2, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/1747-1028-2-18

关键词

-

资金

  1. National Institutes of Health (National Institute of General Medical Sciences)

向作者/读者索取更多资源

In eukaryotes, DNA replication is strictly regulated so that it occurs only once per cell cycle. The mechanisms that prevent excessive DNA replication are focused on preventing replication origins from being reused within the same cell cycle. This regulation involves the temporal separation of the formation of the pre-replicative complex (pre-RC) from the initiation of DNA replication. The replication licensing factors Cdt1 and Cdc6 recruit the presumptive replicative helicase, the Mcm2-7 complex, to replication origins in late M or G1 phase to form pre-RCs. In fission yeast and metazoa, the Cdt1 licensing factor is degraded at the start of S phase by ubiquitin-mediated proteolysis to prevent the reassembly of pre-RCs. In humans, two E3 complexes, CUL4-DDB1(CDT2) and SCFSkp2, are redundantly required for Cdt1 degradation. The two E3 complexes use distinct mechanisms to target Cdt1 ubiquitination. Current data suggests that CUL4-DDB1(CDT2)-mediated degradation of Cdt1 is S-phase specific, while SCFSkp2-mediated Cdt1 degradation occurs throughout the cell cycle. The degradation of Cdt1 by the CUL4-DDB1(CDT2) E3 complex is an evolutionarily ancient pathway that is active in fungi and metazoa. In contrast, SCFSkp2-mediated Cdt1 degradation appears to have arisen relatively recently. A role for Skp2 in Cdt1 degradation has only been demonstrated in humans, and the pathway is not conserved in yeast, invertebrates, or even among other vertebrates.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据