4.6 Article

Electronic structure and thermodynamic stability of double-layered SrTiO3(001) surfaces: Ab initio simulations

期刊

PHYSICAL REVIEW B
卷 75, 期 11, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.75.115417

关键词

-

向作者/读者索取更多资源

Using the B3PW hybrid exchange-correlation functional within density-functional theory and employing Gaussian-type basis sets, we calculated the atomic and electronic structures and thermodynamic stability of three double-layered (DL) SrTiO3(001) surfaces: (i) SrO-terminated, (ii) TiO2-terminated, and (iii) (2x1) reconstruction of TiO2-terminated SrTiO3(001) recently suggested by Erdman [Nature (London) 419, 55 (2002)]. A thermodynamic stability diagram obtained from first-principles calculations shows that regular TiO2- and SrO-terminated surfaces are the most stable. The stability regions of (2x1) DL TiO2- and DL SrO-terminated surfaces lie beyond the precipitation lines of SrO and TiO2 compounds and thus are less stable with respect to regular SrTiO3(001) surfaces. Analysis of the stability diagram suggests that Sr precipitation on SrTiO3 surface never occurs. Our simulations show a substantial increase of Ti-O covalency on the DL surfaces as compared to the regular surfaces, which are themselves more covalent than the crystalline bulk. The implications of our calculated results for recent experimental observations are discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据