4.6 Article

Fluctuations, dissipation, and nonuniversal superfluid jumps in two-dimensional superconductors

期刊

PHYSICAL REVIEW B
卷 75, 期 9, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.75.094506

关键词

-

向作者/读者索取更多资源

We report a comprehensive study of the complex ac conductivity of thin effectively two-dimensional amorphous superconducting InOx films at zero applied field. Below a temperature scale T-c0 where the superconducting order parameter amplitude becomes well defined, there is a temperature where both the generalized superfluid stiffness acquires a frequency dependence and the dc magnetoresistance becomes linear in field. We associate this with a transition of the Kosterlitz-Thouless-Berezinskii (KTB) type. At our measurement frequencies the superfluid stiffness at T-KTB is found to be larger than the universal value. Although this may be understood with a vortex dielectric constant of epsilon(v)approximate to 1.9 within the usual KTB theory, this is a relatively large value and indicates that such a system may be out of the domain of applicability of the low-fugacity (low-vortex-density) KTB treatment. This opens up the possibility that at least some of the discrepancy from a nonuniversal magnitude is intrinsic. Our finite-frequency measurements allow us access to a number of other phenomena concerning the charge dynamics in superconducting thin films, including an enhanced conductivity near the amplitude fluctuation temperature T-c0 and a finite dissipation at low temperature which appears to be a universal aspect of highly disordered superconducting films.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据