4.6 Article

Exact diagonalization dynamical mean-field theory for multiband materials: Effect of Coulomb correlations on the Fermi surface of Na(0.3)CoO(2)

期刊

PHYSICAL REVIEW B
卷 75, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.75.045125

关键词

-

向作者/读者索取更多资源

Dynamical mean-field theory combined with finite-temperature exact diagonalization is shown to be a suitable method to study local Coulomb correlations in realistic multiband materials. By making use of the sparseness of the impurity Hamiltonian, exact eigenstates can be evaluated for significantly larger clusters than in schemes based on full diagonalization. Since finite-size effects are greatly reduced this approach allows the study of three-band systems down to very low temperatures, for strong local Coulomb interactions and full Hund exchange. It is also shown that exact diagonalization yields smooth subband quasiparticle spectra and self-energies at real frequencies. As a first application the correlation induced charge transfer between t(2g) bands in Na(0.3)CoO(2) is investigated. For both Hund and Ising exchange the small e(g)(') Fermi surface hole pockets are found to be slightly enlarged compared to the noninteracting limit, in agreement with previous quantum Monte Carlo dynamical mean-field calculations for Ising exchange, but in conflict with photoemission data.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据