4.6 Article

Full counting statistics for the number of electrons in a quantum dot

期刊

PHYSICAL REVIEW B
卷 75, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.75.035333

关键词

-

向作者/读者索取更多资源

Motivated by recent real-time electron counting experiments, we evaluate the full counting statistics for the probability distribution of the electron number inside a quantum dot which is weakly coupled to source and drain leads. A non-Gaussian exponential distribution appears when there is no dot state close to the lead chemical potentials. We propose the measurement of the joint probability distribution of current and electron number, which reveals correlations between the two observables. We also show that for increasing strength of tunneling, the quantum fluctuations qualitatively change the probability distribution of the electron number. In this paper, we derive the cumulant generating functions (CGFs) of the joint probability distribution for several cases. The Keldysh generating functional approach is adopted to obtain the CGFs for the resonant-level model and for the single-electron transistor in the intermediate conductance regime. The general form for the CGF of the joint probability distribution is provided within the Markov approximation in an extension of the master equation approach [D. A. Bagrets and Yu. V. Nazarov, Phys. Rev. B 67, 085316 (2003)].

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据