4.6 Article

Action spectroscopy for single-molecule motion induced by vibrational excitation with a scanning tunneling microscope

期刊

PHYSICAL REVIEW B
卷 75, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.75.041403

关键词

-

向作者/读者索取更多资源

We propose an action spectroscopy for single-molecule motion induced by vibrational excitation with a scanning tunneling microscope (STM). Calculations of the inelastic tunneling current for excitation of the C-O stretch mode of the CO molecule on metal surfaces are combined with a theory which describes how the energy in the vibrational mode is transferred to a reaction coordinate mode to overcome the activation barrier. The calculated rate for CO hopping on Pd (110) as a function of the bias voltage agrees with the experimental result. It is proposed that the second derivative of the reaction rate with respect to the bias voltage is related to the vibrational density of states, which usually cannot be directly observed in STM inelastic electron tunneling spectroscopy when a molecule motion is induced by vibrational excitation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据