4.6 Article

Excitation gap of a graphene channel with superconducting boundaries

期刊

PHYSICAL REVIEW B
卷 75, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.75.045417

关键词

-

向作者/读者索取更多资源

We calculate the density of states of electron-hole excitations in a superconductor-normal-metal-superconductor (SNS) junction in graphene, in the long-junction regime that the superconducting gap Delta(0) is much larger than the Thouless energy E-T=hv/d (with v the carrier velocity in graphene and d the separation of the NS boundaries). If the normal region is undoped, the excitation spectrum consists of neutral modes that propagate along the boundaries-transporting energy but no charge. These Andreev modes are a coherent superposition of electron states from the conduction band and hole states from the valence band, coupled by specular Andreev reflection at the superconductor. The lowest Andreev mode has an excitation gap of E-0=1/2(pi-parallel to phi parallel to)E-T, with phi is an element of(-pi,pi) the superconducting phase difference. At high doping (Fermi energy mu > E-T) the excitation gap vanishes proportional to E-0(E-T/mu)(2), and the usual gapless density of states of Andreev levels is recovered. We use our results to calculate the phi dependence of the thermal conductance of the graphene channel.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据