4.7 Article

Multifrequency third-harmonic generation by red-shifting solitons in a multimode photonic-crystal fiber

期刊

PHYSICAL REVIEW E
卷 75, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.75.016614

关键词

-

向作者/读者索取更多资源

While the standard scenario of third-harmonic generation (THG) by a dispersive-wave pump involves the emission of light with a frequency 3 omega, thrice the frequency omega of the input pump field, solitons undergoing a continuous shift of their central frequency omega due to the Raman effect in a multimode optical fiber can generate the third harmonic in a different fashion. In the experiments reported here, we provide the first direct experimental evidence of THG by a continuously red-shifting soliton pump by studying the third-harmonic buildup in relation to the spectral evolution of the soliton pump field in a silica photonic-crystal fiber (PCF). We show that solitons excited in a PCF by unamplified femtosecond pulses of a Cr:forsterite laser sweep through the spectral range from 1.25 to 1.63 mu m, scanning through a manifold of THG phase-matching resonances with 3 omega dispersive waves in PCF modes. As a result, intense third-harmonic peaks build up in the range of wavelengths from 370 to 550 nm at the output of the fiber, making PCF a convenient fiber-format multifrequency source of short-wavelength radiation. Time-resolved fluorescence measurements with photoexcitation provided by the third-harmonic PCF output are presented, demonstrating the high potential of PCF sources for an ultrafast photoexcitation of fluorescent molecular systems in physics, chemistry, and biology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据