4.7 Article

Deep mid-infrared silicate absorption as a diagnostic of obscuring geometry toward galactic nuclei

期刊

ASTROPHYSICAL JOURNAL
卷 654, 期 1, 页码 L45-L48

出版社

IOP PUBLISHING LTD
DOI: 10.1086/510778

关键词

galaxies : active; galaxies : nuclei; infrared : galaxies; radiative transfer

向作者/读者索取更多资源

The silicate cross section peak near 10 mu m produces emission and absorption features in the spectra of dusty galactic nuclei observed with the Spitzer Space Telescope. Especially in ultraluminous infrared galaxies, the observed absorption feature can be extremely deep, as IRAS 08572 + 3915 illustrates. A foreground screen of obscuration cannot reproduce this observed feature, even at a large optical depth. Instead, the deep absorption requires a nuclear source to be deeply embedded in a smooth distribution of material that is both geometrically and optically thick. In contrast, a clumpy medium can produce only shallow absorption or emission, which are characteristic of optically identified active galactic nuclei. In general, the geometry of the dusty region and the total optical depth, rather than the grain composition or heating spectrum, determine the silicate feature's observable properties. The apparent optical depth calculated from the ratio of line to continuum emission generally fails to accurately measure the true optical depth. The obscuring geometry, not the nature of the embedded source, also determines the far-IR spectral shape.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据