4.7 Article

Synchronization in coupled cells with activator-inhibitor pathways

期刊

PHYSICAL REVIEW E
卷 75, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.75.011906

关键词

-

向作者/读者索取更多资源

The functional dynamics exhibited by cell collectives are fascinating examples of robust, synchronized, collective behavior in spatially extended biological systems. To investigate the roles of local cellular dynamics and interaction strength in the spatiotemporal dynamics of cell collectives of different sizes, we study a model system consisting of a ring of coupled cells incorporating a three-step biochemical pathway of regulated activator-inhibitor reactions. The isolated individual cells display very complex dynamics as a result of the nonlinear interactions common in cellular processes. On coupling the cells to nearest neighbors, through diffusion of the pathway end product, the ring of cells yields a host of interesting and unusual dynamical features such as, suppression of chaos, phase synchronization, traveling waves, and intermittency, for varying interaction strengths and system sizes. But robust complete synchronization can be induced in these coupled cells with a small degree of random coupling among them even where regular coupling yielded only intermittent synchronization. Our studies indicate that robustness in synchronized functional dynamics in tissues and cell populations in nature can be ensured by a few transient random connections among the cells. Such connections are being discovered only recently in real cellular systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据