4.7 Article

Tree genotype mediates covariance among communities from microbes to lichens and arthropods

期刊

JOURNAL OF ECOLOGY
卷 103, 期 4, 页码 840-850

出版社

WILEY
DOI: 10.1111/1365-2745.12416

关键词

common garden; community assembly theory; community evolution; community networks; community phenotype; community-genetic correlations; ecological genetics and ecogenomics; interacting foundation species hypothesis; physical proximity hypothesis; Populus

资金

  1. NSF FIBR [DEB-0425908]
  2. NSF [DEB-1340852, DBI-1126840]
  3. Direct For Biological Sciences
  4. Div Of Biological Infrastructure [1126840] Funding Source: National Science Foundation

向作者/读者索取更多资源

Community genetics studies frequently focus on individual communities associated with individual plant genotypes, but little is known about the genetically based relationships among taxonomically and spatially disparate communities. We integrate studies of a wide range of communities living on the same plant genotypes to understand how the ecological and evolutionary dynamics of one community may be constrained or modulated by its underlying genetic connections to another community. We use pre-existing data sets collected from Populus angustifolia (narrowleaf cottonwood) growing in a common garden to test the hypothesis that the composition of pairs of distinct communities (e.g. endophytes, pathogens, lichens, arthropods, soil microbes) covary across tree genotypes, such that individual plant genotypes that support a unique composition of one community are more likely to support a unique composition of another community. We then evaluate the hypotheses that physical proximity, taxonomic similarity, time between sampling (time attenuation), and interacting foundation species within communities explain the strength of correlations. Three main results emerged. First, Mantel tests between communities revealed moderate to strong (=0.25-0.85) community-genetic correlations in almost half of the comparisons; correlations among phyllosphere endophyte, pathogen and arthropod communities were the most robust. Secondly, physical proximity determined the strength of community-genetic correlations, supporting a physical proximity hypothesis. Thirdly, consistent with the interacting foundation species hypothesis, the most abundant species drove many of the stronger correlations. Other hypotheses were not supported.Synthesis. The field of community genetics demonstrates that the structure of communities varies among plant genotypes; our results add to this field by showing that disparate communities covary among plant genotypes. Eco-evolutionary dynamics between plants and their associated organisms may therefore be mediated by the shared connections of different communities to plant genotype, indicating that the organization of biodiversity in this system is genetically based and non-neutral.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据