4.8 Article

Role of sediment resuspension in the remobilization of particulate-phase metals from coastal sediments

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 41, 期 7, 页码 2282-2288

出版社

AMER CHEMICAL SOC
DOI: 10.1021/es061770z

关键词

-

向作者/读者索取更多资源

The release of particulate-phase trace metals due to sediment resuspension has been investigated by combining erosion chamber experiments that apply a range of shear stresses typically encountered in coastal environments with a shear stress record simulated by a hydrodynamic model. Two sites with contrasting sediment chemistry were investigated. Sediment particles enriched in silver, copper, and lead, 4-50 times greater than the bulk surface-sediment content, were the first particles to be eroded. As the shear-stress level was increased in the chamber, the total mass eroded increased, but the enrichment of these trace metals fell, approaching the bulk-sediment content. From the temporal distribution of shear stress generated by the hydrodynamic model for a site in Boston Harbor, resuspension fluxes were estimated. The erosion threshold of this site is exceeded during spring tides, releasing the particles enriched in trace metals into the water column. Due to the higher trace metal content and the regularity of resuspension, low-energy resuspension events (up to a shear stress of 0.2 N/m(2)) contribute up to 60% of the resuspension metal flux in an average year. The estimated annual quantity of copper and lead resuspended into the water column is higher than estimates of the total riverine flux for these metals. These results indicate that sediment resuspension is a very important mechanism for releasing metals into the water column and provide new insight into the chemical and physical processes controlling the long-term fate of trace metals in contaminated sediments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据