4.7 Article

A deteriorating state of affairs: How endogenous and exogenous factors determine plant decay rates

期刊

JOURNAL OF ECOLOGY
卷 103, 期 6, 页码 1421-1431

出版社

WILEY
DOI: 10.1111/1365-2745.12474

关键词

anatomy; carbon and nutrient cycling; chemistry; decomposition; fine branch; leaf litter; morphology; plant traits; plant-climate interactions; stems

资金

  1. NSF [DEB-1302797]
  2. Division Of Environmental Biology
  3. Direct For Biological Sciences [1302797] Funding Source: National Science Foundation

向作者/读者索取更多资源

Woody plants store large quantities of carbon (C) and nutrients. As plants senesce and decay, these stores transfer to the soil or other organisms or are released to the atmosphere. Exogenous factors such as topographic position and microclimatic and edaphic conditions tied to locations affect decay rates; however, we know less about how exogenous relative to endogenous factors such as morphological, anatomical and chemical construction tied to plant species affect these rates, especially across different tissue types. We monitored stem, fine branch and leaf decay over 1year in rot plots' distributed across four watersheds in ridge top and valley bottom habitats in a temperate deciduous oak-hickory forest at Tyson Research Center, MO, USA, in the Ozark Highlands for 21 species of woody plants that vary in their constructions. We found poor coordination across tissues in construction and decay, which likely reflects how functional constraints on living tissues influence recalcitrance to decay. Additionally, for all three tissues, species membership and construction were better predictors of decay than was location. Of the construction traits, chemical composition including total fibre, lignin, cellulose, hemicellulose and concentrations of multiple microelements were the best predictors of decay, although the strength of these relationships differed among tissues.Synthesis. We have long known that rates of biogeochemical cycling are influenced by exogenous factors, such as climatic and edaphic factors. Here, we show across plant tissues that endogenous factors, including species identity and tissue construction, can have stronger controls on rates of decay within our study system than do exogenous factors. However, it is likely that the relative strengths of these different controls change through time and among tissues. We predict that anatomical and morphological controls may be more important at early stages and exogenous factors may be more important at later stages of decay.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据