4.6 Article

Mathematical modeling of subgenomic hepatitis C virus replication in Huh-7 cells

期刊

JOURNAL OF VIROLOGY
卷 81, 期 2, 页码 750-760

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/JVI.01304-06

关键词

-

类别

资金

  1. NATIONAL CENTER FOR RESEARCH RESOURCES [R01RR006555, P20RR018754] Funding Source: NIH RePORTER
  2. NCRR NIH HHS [R01 RR006555, P20 RR018754, P20-RR18754, RR06555] Funding Source: Medline

向作者/读者索取更多资源

Cell-based hepatitis C virus (HCV) replicon systems have provided a means for understanding HCV replication mechanisms and for testing new antiviral agents. We describe here a mathematical model of HCV replication that assumes that the translation of the HCV polyprotein occurs in the cytoplasm, that HCV RNA synthesis occurs in vesicular-membrane structures, and that the strategy of replication involves a double-stranded RNA intermediate. Our results shed light on the intracellular dynamics of subgenomic HCV RNA replication from transfection to steady state within Huh-7 cells. We predict the following: (i) about 6 x 103 ribosomes are involved in generating millions of HCV NS5B-polymerase molecules in a Huh-7 cell, (ii) the observed 10:1 asymmetry of plus- to minus-strand RNA levels can be explained by a higher-affinity (200-fold) interaction of HCV NS5B polymerase-containing replication complexes with HCV minus-strand RNA over HCV plus-strand RNA in order to initiate synthesis, (iii) the latter higher affinity can also account for the observed similar to 6:1 plus-strand/minus-strand ratio in vesicular-membrane structures, and (iv) the introduction of higher numbers of HCV plus-strand RNA by transfection leads to faster attainment of steady-state but does not change the steady-state HCV RNA level. Fully permissive HCV replication systems have been developed, and the model presented here is a first step toward building a comprehensive model for complete HCV replication. Moreover, the model can serve as an important tool in understanding HCV replication mechanisms and should prove useful in designing and evaluating new antivirals against HCV.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据