4.4 Article

N-cadherin mediates cortical organization in the mouse brain

期刊

DEVELOPMENTAL BIOLOGY
卷 304, 期 1, 页码 22-33

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ydbio.2006.12.014

关键词

adherens junction; N-cadherin; D6-Cre; cerebral cortex; hippocampus; radial glial cells; neuroepithelial cells

向作者/读者索取更多资源

The cerebral cortex is a complex laminated structure generated by the sequential migration of developing neurons from the ventricular zone. One of the molecules that may play a role in cortical morphogenesis is N-cadherin since its blocking causes disruption of the ordered arrangement of cells in other neural tissues, such as the neural retina. Here, we show that when the N-cadherin gene had been conditionally deleted in the mouse cerebral cortex, the intra-cortical structures were nearly completely randomized; e.g., mitotic cells and postmitotic cells were scattered throughout the cortex without any order. These defects seemed to mainly originate from the disruption of the adherens junctions (AJs) localized in the apical end of neuroepithelial cells, where N-cadherin is normally most highly concentrated. In the absence of N-cadherin, neuroepithelial or radial glial cells could not expand their bodies or processes to span the distance between the ventricular and pial surfaces and therefore terminated them in the middle zone of the cortex. These results demonstrate that N-cadherin is essential for maintaining the normal architecture of neuroepithelial or radial glial cells and that their disruption randomizes the internal structures of the cortex. (c) 2006 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据