4.8 Article

Toxin-antitoxin regulation: bimodal interaction of YefM-YoeB with paired DNA palindromes exerts transcriptional autorepression

期刊

NUCLEIC ACIDS RESEARCH
卷 35, 期 1, 页码 325-339

出版社

OXFORD UNIV PRESS
DOI: 10.1093/nar/gkl1028

关键词

-

资金

  1. Wellcome Trust Funding Source: Medline

向作者/读者索取更多资源

Toxin-antitoxin (TA) complexes function in programmed cell death or stress response mechanisms in bacteria. The YefM-YoeB TA complex of Escherichia coli consists of YoeB toxin that is counteracted by YefM antitoxin. When liberated from the complex, YoeB acts as an endoribonuclease, preferentially cleaving 3' of purine nucleotides. Here we demonstrate that yefM-yoeB is transcriptionally autoregulated. YefM, a dimeric protein with extensive secondary structure revealed by circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy, is the primary repressor, whereas YoeB is a repression enhancer. The operator site 5' of yefM-yoeB comprises adjacent long and short palindromes with core 5'-TGTACA-3' motifs. YefM binds the long palindrome, followed sequentially by short palindrome recognition. In contrast, the repressor-corepressor complex recognizes both motifs more avidly, impyling that YefM within the complex has an enhanced DNA-binding affinity compared to free YefM. Operator interaction by YefM and YefM-YoeB is accompanied by structural transitions in the proteins. Paired 5'-TGTACA-3' motifs are common in yefM-yoeB regulatory regions in diverse genomes suggesting that interaction of YefM-YoeB with these motifs is a conserved mechanism of operon autoregulation. Artificial perturbation of transcriptional autorepression could elicit inappropriate YoeB toxin production and induction of bacterial cell suicide, a potentially novel antibacterial strategy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据