4.8 Article

Epitope mapping using combinatorial phage-display libraries: a graph-based algorithm

期刊

NUCLEIC ACIDS RESEARCH
卷 35, 期 1, 页码 69-78

出版社

OXFORD UNIV PRESS
DOI: 10.1093/nar/gkl975

关键词

-

向作者/读者索取更多资源

A phage-display library of random peptides is a combinatorial experimental technique that can be harnessed for studying antibody-antigen interactions. In this technique, a phage peptide library is scanned against an antibody molecule to obtain a set of peptides that are bound by the antibody with high affinity. This set of peptides is regarded as mimicking the genuine epitope of the antibody's interacting antigen and can be used to define it. Here we present PepSurf, an algorithm for mapping a set of affinity-selected peptides onto the solved structure of the antigen. The problem of epitope mapping is converted into the task of aligning a set of query peptides to a graph representing the surface of the antigen. The best match of each peptide is found by aligning it against virtually all possible paths in the graph. Following a clustering step, which combines the most significant matches, a predicted epitope is inferred. We show that PepSurf accurately predicts the epitope in four cases for which the epitope is known from a solved antibody-antigen co-crystal complex. We further examine the capabilities of PepSurf for predicting other types of protein-protein interfaces. The performance of PepSurf is compared to other available epitope mapping programs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据