4.7 Article

Radiofrequency Field-Induced Thermal Cytotoxicity in Cancer Cells Treated With Fluorescent Nanoparticles

期刊

CANCER
卷 116, 期 13, 页码 3285-3293

出版社

WILEY-BLACKWELL
DOI: 10.1002/cncr.25135

关键词

quantum dot; nanoparticle; noninvasive radiofrequency field treatment; photothermal therapy; hyperthermic cytotoxicity

类别

资金

  1. Kanzius Research Foundation
  2. National Cancer Institute at the National Institutes of Health [5 T32 CA09599]
  3. National Cancer Institute [CA16672]

向作者/读者索取更多资源

BACKGROUND: Nonionizing radiation, such as radiofrequency field and near infrared laser, induces thermal cytotoxicity in cancer cells treated with gold nanoparticles. Quantum dots are fluorescent semiconducting nanoparticles that were hypothesized to induce similar injury after radiofrequency field irradiation. METHODS: Gold nanoparticles and 2 types of quantum dot (cadmium-selenide and indium-gallium-phosphide) conjugated to cetuximab (C225), a monoclonal antibody against human epidermal growth factor receptor (EGFR)-1, demonstrated concentration-dependent heating in a radiofrequency field. The authors investigated the effect of radiofrequency field exposure after targeted nanoparticle treatment in a coculture of 2 human cancer cell lines that have differential EGFR-1 expression (a high-expressing pancreatic carcinoma, Panc-1, and a low-expressing breast carcinoma, Cama-1). RESULTS: Radiofrequency revealed that Panc-1 or Cama-1 cells not containing gold nanoparticles or quantum dots had a viability of >92%. The viability of Panc-1 cells exposed to the radiofrequency field after treatment with 50 nM Au-C225 was 39.4% +/- 8.3% without injury to bystander Cama-1 cells (viability was 93.7% +/- 1.0%; P similar to .0006). Panc-1 cells treated with targeted cadmium-selenide quantum dots were only 47.5% viable after radiofrequency field exposure (P<.0001 compared with radiofrequency only Panc-1 control cells). Targeted indium-gallium-phosphide quantum dots decreased Panc-1 viability to 58.2% +/- 3.4% after radiofrequency field exposure (P = similar to.0004 compared with Cama-1 and Panc-1 controls). CONCLUSIONS: The authors selectively induced radiofrequency field cytotoxicity in Panc-1 cells without injury to bystander Cama-1 cells using EGFR-1-targeted nanoparticles, and demonstrated an interesting bifunctionality of fluorescent nanoparticles as agents for both cancer cell imaging and treatment. Cancer 2010;116:3285-93. (C) 2010 American Cancer Society.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据