4.8 Article

Incorporation of 5-fluorouracil into U2 snRNA blocks pseudouridylation and pre-mRNA splicing in vivo

期刊

NUCLEIC ACIDS RESEARCH
卷 35, 期 2, 页码 550-558

出版社

OXFORD UNIV PRESS
DOI: 10.1093/nar/gkl1084

关键词

-

资金

  1. NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES [R01GM062937] Funding Source: NIH RePORTER
  2. NIGMS NIH HHS [GM62937, R01 GM062937] Funding Source: Medline

向作者/读者索取更多资源

5-fluorouracil (5FU) is an effective anti-cancer drug, yet its mechanism of action remains unclear. Here, we examine the effect of 5FU on pre-mRNA splicing in vivo. Using RT-PCR, we show that the splicing of a number of pre-mRNAs is inhibited in HeLa cells that have been exposed to a low dose of 5FU. It appears that this inhibitory effect is not due to its incorporation into pre-mRNA, because partially or fully 5FU-substituted pre-mRNA, when injected into Xenopus oocytes, is spliced just as well as is the unsubstituted pre-mRNA. Detailed analyses of 5FU-treated cells indicate that 5FU is incorporated into U2 snRNA at important naturally occurring pseudouridylation sites. Remarkably, 5FU incorporation effectively blocks the formation of important pseudouridines in U2 snRNA, as only a trace of pseudouridine is detected when cells are exposed to a low dose of 5FU for 5 days. Injection of the hypopseudouridylated HeLa U2 snRNA into U2-depleted Xenopus oocytes fails to reconstitute pre-mRNA splicing, whereas control U2 isolated from untreated or uracil-treated HeLa cells completely reconstitutes the splicing. Our results demonstrate for the first time that 5FU incorporates into a spliceosomal snRNA at natural pseudouridylation sites in vivo, thereby inhibiting snRNA pseudouridylation and splicing. This mechanism may contribute substantially to 5FU-mediated cell death.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据