4.6 Article

Neurogenesis in the postnatal human epileptic brain

期刊

JOURNAL OF NEUROSURGERY
卷 107, 期 3, 页码 628-635

出版社

AMER ASSOC NEUROLOGICAL SURGEONS
DOI: 10.3171/JNS-07/09/0628

关键词

cell migration; epilepsy; hemimegalencephaly; malformation of cortical development; neurogenesis; stem cell

资金

  1. NINDS NIH HHS [1R21 NS42354, K08 NS02046] Funding Source: Medline
  2. NATIONAL INSTITUTE OF NEUROLOGICAL DISORDERS AND STROKE [K08NS002046, R21NS042354] Funding Source: NIH RePORTER

向作者/读者索取更多资源

Object. The normal adult human telencephalon does not reveal evidence of spontaneous neuronal migration and differentiation despite the robust germinal capacity of the subventricular zone (SVZ) astrocyte ribbon that contains neural stem cells. This might be because it is averse to accepting new neurons into an established neuronal network, probably representing an evolutionary acquisition to prevent the formation of anomalous neuronal circuits. Some forms of epilepsy, such as malformations of cortical development, are thought to be due to abnormal corticogenesis during the embryonic and early postnatal periods. The role of postnatal architectural reorganization and possibly postnatal neurogenesis in some forms of epilepsy in humans remains unknown. In this study the authors used resected specimens of epileptic brain to determine whether neurogenesis could occur in the diseased tissue. Methods. The authors studied freshly resected brain tissue obtained in 47 patients who underwent neurosurgical procedures and four autopsies. Forty-four samples were harvested in patients who underwent resection for the treatment of pharmacoresistant epilepsy. Results. Using organotypic brain slice preparations cultured with 5-bromodeoxyuridine (a marker for cell proliferation), immunohistochemistry, and cell trackers, the authors demonstrate the presence of spontaneous cell proliferation, migration, and neuronal differentiation in the adult human telencephalon that starts in the SVZ and progresses to the adjacent white matter and neocortex in human neocortical pathological structures associated with epilepsy. No cell migration or neuronal differentiation was found in the control group. Conclusions. The presence of spontaneous neurogenesis associated with some forms of human neocortical epilepsy may represent an erroneous and maladaptive mechanism for neuronal circuitry repair, or it may be an intrinsic part of the pathogenic process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据