4.7 Review

Catalytic effects on methanol oxidation produced by cathodization of platinum electrodes

期刊

JOURNAL OF COLLOID AND INTERFACE SCIENCE
卷 313, 期 1, 页码 232-247

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2007.04.006

关键词

electrocatalysis; platinum; methanol; subsurface hydrogen; ordered water

向作者/读者索取更多资源

A catalytic effect is found for methanol oxidation after new active surface states are produced on polycrystalline platinum by potentiostatic cathodization in acid media at room temperature. This procedure originates surface states not available on the original polycrystalline electrodes with unexpected cyclic voltammetric responses; i.e., at least four new peaks below 0.9 V are observed. The cathodization process also induces a rearrangement of the bulk platinum oxide, showing a defined peak at 1.2 V. The appearance of these new states is also proven by open-circuit potential decays. The electrocatalytic activity of these new surfaces in methanol oxidation is compared with that of the untreated electrodes by electrochemical impedance spectroscopy, chronoamperometry, and cyclic voltammetry. The cathodic procedure enhances the methanol oxidation voltammetric current peaks with charge density values higher than those on untreated platinum. The integration of chronoamperometric plots over 10 min in methanol acid media presents the largest difference between 0.6 and 0.7 V with respect to the original surface. Analysis of the impedance data shows that the values of polarization resistance for methanol oxidation on the cathodically treated platinum are lower than those of the original surface. According to the time constant values for methanol oxidation, the original surface can be considered less tolerant of the formation of catalytic poisons. A discussion of the most likely mechanism for the formation of the new active sites on platinum is presented here, assuming the presence of hydrogen subsurface states, ordered water clusters, and low-coordinated platinum atoms. (c) 2007 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据