4.7 Article

Oxidative addition of 2-substituted azolium salts to Group-10 metal zero complexes - A DFT study

期刊

DALTON TRANSACTIONS
卷 -, 期 41, 页码 4650-4658

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b709914b

关键词

-

向作者/读者索取更多资源

Generation of N-heterocyclic carbene (NHC) complexes [(dmpe)M(azol-2-ylidene)R] via the oxidative addition of a series of 2-substituted azolium salts to Group-10 zerovalent metal complexes has been investigated using density functional theory (2-R = H, Me, Ph; Azole = imidazole, thiazole, oxazole; M = Ni, Pd, Pt). Overall, platinum-based pathways result in the greatest enthalpies of reaction, but due to the reactive nature of Group-10 metals bearing the 1,2-bis(dimethylphosphino) ethane ( dmpe) chelate, nickel and palladium species also have little trouble proceeding to stable products in the absence of a significant barrier. Imidazolium salts were found to be the most vulnerable to oxidative addition due to their low stabilisation energies when compared to the oxazolium and thiazolium species. Activation barriers show the general trend of phenyl > methyl > hydrido with regard to the azole 2-substituent, with no observed barrier for all but one of the 2-hydrido cases. Minimal barriers were found to exist in a number of cases for activation of a C(2)-CH3 bond suggesting that synthesis of alkyl-carbene complexes may be possible via this route under certain conditions, and therefore ionic liquids based on these substituted azolium salts may be active participants in catalytic reactions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据