4.5 Article

Engineering a de novo internal disulfide bridge to improve the thermal stability of xylanase from Bacillus stearothermophilus No. 236

期刊

JOURNAL OF BIOTECHNOLOGY
卷 127, 期 2, 页码 300-309

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jbiotec.2006.07.005

关键词

Bacillus stearothermophilus No. 236; endo-beta-1,4-xylanase; disulfide bridge; thermostability

向作者/读者索取更多资源

Improvement of thermal stability of the Bacillus stearthermophilus No. 236 endo-beta-1,4-xylanase (XynA) was tried by engineering a de novo designed disulfide bridge. Disulfide design was performed firstly using the disulfide bond design program (Disulfide by Design (TM)) to identify residue pairs having the favorable geometric characteristics for disulfide formation. Subsequently, the selected 25 amino acid pairs were filtered with the evolutionarily conserved Cys residues identified by alignment of 34 family 11 mesophilic and thermophilic xylanases, and also by doing inspection of the molecular model of the xylanases. Only one pair (Ser100 and Asn150) was finally chosen, and the respective amino acids were substituted with cysteine residues. The newly designed disulfide bridge increased thermostability of the XynA about 5 degrees C. This improved thermal stability was supported by the increase in the energy barrier for inactivation. As expected, the mutant XynA SNC demonstrated its better use in the hydrolysis of xylan at substantially higher temperatures than permitted by its native counterpart. The mutation had little influence on the catalytic efficiency and other functional properties of the XynA. In conclusion, it is evident that the strategically placed disulfide bridge has made the XynA be more effective in resisting thermal inactivation. (c) 2006 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据