4.7 Article

Cavities generated by self-organised monolayers as sensitive coatings for surface acoustic wave resonators

期刊

ANALYTICAL AND BIOANALYTICAL CHEMISTRY
卷 387, 期 2, 页码 561-566

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s00216-006-0978-0

关键词

SAW; VOC detection; self-assembled monolayers; quartz surfaces; chlorosilanes

向作者/读者索取更多资源

Silanisation of quartz substrate surfaces with a mixture of two chlorosilanes, namely trimethylchlorosilane and 7-octenyldimethylchlorosilane, leads to sensitive coatings for volatile organic compounds (VOC) on surface acoustic wave (SAW) devices. In this way we created monolayers of molecular cavities engulfing the analytes according to host-guest chemistry directly on the device surfaces, and also confirmed the occurrence of such cavities by molecular modelling. We monitored the binding process of the silanes by using Fourier transform infrared (FTIR) spectrometry and atomic force microscopy (AFM). In order to increase the stiffness of the cavities, we crosslinked the terminal double bonds of the long spacers by heating the surface in the presence of a radical initiator. Compared to SAW delay lines silanised with trimethylchlorosilane, devices modified with the binary silane mixture lead to substantially higher frequency shifts when exposed to solvent vapour streams. Nearly instantaneous responses can be observed, which e.g. allows xylene detection down to a few ppm.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据