4.5 Article

Targeted deletion of the muscular dystrophy gene myotilin does not perturb muscle structure or function in mice

期刊

MOLECULAR AND CELLULAR BIOLOGY
卷 27, 期 1, 页码 244-252

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/MCB.00561-06

关键词

-

资金

  1. Telethon [GGP04088] Funding Source: Medline

向作者/读者索取更多资源

Myotilin, palladin, and myopalladin form a novel small subfamily of cytoskeletal proteins that contain immunoglobulin-like domains. Myotilin is a thin filament-associated protein localized at the Z-disk of skeletal and cardiac muscle cells. The direct binding to F-actin, efficient cross-linking of actin filaments, and prevention of induced disassembly of filaments are key roles of myotilin that are thought to be involved in structural maintenance and function of the sarcomere. Missense mutations in the myotilin-encoding gene cause dominant limb girdle muscular dystrophy type 1A and spheroid body myopathy and are the molecular defect that can cause myotibrillar myopathy. Here we describe the generation and analysis of mice that lack myotilin, myo(-/-) mice. Surprisingly, myo(-/-) mice maintain normal muscle sarcomeric and sarcolemmal integrity. Also, loss of myotilin does not cause alterations in the heart or other organs of newborn or adult myo(-/-) mice. The mice develop normally and have a normal life span, and their muscle capacity does not significantly differ from wild-type mice even after prolonged physical stress. The results suggest that either myotilin does not participate in muscle development and basal function maintenance or other proteins serve as structural and functional compensatory molecules when myotilin is absent.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据