4.6 Article

Aromaticity: Molecular-orbital picture of an intuitive concept

期刊

CHEMISTRY-A EUROPEAN JOURNAL
卷 13, 期 22, 页码 6321-6328

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.200700206

关键词

aromaticity; benzene; bond theory; cyclobutadiene; density functional calculations

向作者/读者索取更多资源

Geometry is one of the primary and most direct indicators of aromaticity and anti aromaticity: a regular structure with delocalized double bonds (e.g., benzene) is symptomatic of aromaticity, whereas a distorted geometry with localized double bonds (e.g., 1,3-cyclobutadiene) is characteristic of anti aromaticity. Here, we present a molecular-orbital (MO) model of aromaticity that explains, in terms of simple orbital-overlap arguments, why this is so. Our MO model is based on accurate Kohn-Sham DFT analyses of the bonding in benzene, 1,3-cyclobuta-diene, cyclohexane, and cyclobutane, and how the bonding mechanism is affected if these molecules undergo geometrical deformations between regular, delocalized ring structures, and distorted ones with localized double bonds. We show that the propensity of the pi electrons is always, that is, in both the aromatic and antiaromatic molecules, to localize the double bonds, against the delocalizing force of the sigma electrons. More importantly, we show that the pi electrons nevertheless decide about the localization or delocalization of the double bonds. A key component of our model for uncovering and resolving this seemingly contradictory situation is to analyze the bonding in the various model systems in terms of two interpenetrating fragments that preserve, in good approximation, their geometry along the localization/delocalization modes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据