4.7 Article

Differences of Eu(III) and Cm(III) chemistry in ionic liquids: investigations by TRLFS

期刊

DALTON TRANSACTIONS
卷 -, 期 2, 页码 240-248

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b612530a

关键词

-

向作者/读者索取更多资源

In this study the coordination structure and chemistry of Eu(III) and Cm(III) in the ionic liquid C(4)mimTf(2)N (1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide) was investigated by time-resolved laser fluorescence spectroscopy (TRLFS). The dissolution of 1 x 10(-2) M Eu(CF3SO3)(3) and 1 x 10(-7) M Cm(ClO4)(3) in C(4)mimTf(2)N leads to the formation of two species for each cation with fluorescence emission lifetimes of 2.5 +/- 0.2 ms and 1.0 +/- 0.3 ms for the Eu-species and 1.0 +/- 0.3 ms and 300.0 +/- 50 mu s for the Cm-species. The interpretation of the TRLFS data indicates a comparable coordination for both the lanthanide and actinide cation in this ionic liquid. The quenching influence of Cu(II) on the fluorescence emission of Eu(III) and Cm(III) was also measured by TRLFS. While Cu(II) does not quench the Cm(III) fluorescence emission in C(4)mimTf(2)N the Eu(III) fluorescence emission lifetime for both Eu-species in C(4)mimTf(2)N decreases with increasing Cu(II) concentration. Stern-Volmer constants were calculated (k(SV) = 1.54 x 10(6) M-1 s(-1) and k(SV) = 2.70 x 10(6) M-1). By contrast, the interaction of Cu(II) with Eu(III) and Cm(III) in water leads to a quenching of both the lanthanide and actinide fluorescence. The calculated Stern-Volmer constants are 1.20 x 10(4) M-1 s(-1) for Eu(III) and 1.27 x 10(4) M-1 s(-1) for Cm(III). The investigations show, while the chemistry of trivalent lanthanides and actinides is similar in an aqueous system it is dramatically different in ionic liquids. This difference in chemical behavior may provide the opportunity for a separation of lanthanides and actinides with regard to the reprocessing of nuclear fuel.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据