4.6 Article

Modeling of particle-particle interactions in porous cathodes for lithium-ion batteries

期刊

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
卷 154, 期 12, 页码 A1146-A1155

出版社

ELECTROCHEMICAL SOC INC
DOI: 10.1149/1.2783772

关键词

-

向作者/读者索取更多资源

In this work, we present a mathematical model and associated experiments for describing the performance of porous electrodes under high rates of charge and discharge. By increasing the physical accuracy of porous battery modeling, we hope to enable improved design of cells for high-power applications, such as hybrid and plug-in-hybrid electric vehicles. The model includes an improved accounting of electron transfer between different-size particles or materials, including the conductive carbon additive, as well as a modified Bruggeman relation to handle liquid-phase ion transport through porous electrodes. Both types of resistance, electronic and liquid-phase ionic, are strongly coupled to particle properties, including size and volume-fraction distributions. The model is used to better understand the cause for decreased utilization of active material for relatively highly loaded lithium-ion cathodes at high discharge rates. It was found for LixCoO2 cathodes with loading around 1.6 mAh/cm(2) that voltage losses at 1C discharge rate are mostly governed by local interparticle resistances. At 5C discharge rate, diffusional resistance in the liquid electrolyte had the greatest influence on cell performance. (c) 2007 The Electrochemical Society.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据