4.5 Article

Modeling the excitation of guided waves in generally anisotropic multilayered media

期刊

出版社

ACOUSTICAL SOC AMER AMER INST PHYSICS
DOI: 10.1121/1.2390674

关键词

-

向作者/读者索取更多资源

The design of transducers to excite and detect guided waves is a fundamental part of a nondestructive evaluation or structural health monitoring system and requires the ability to predict the radiated guided wave field of a transmitting transducer. For most transducers, this can be performed by making the assumption that the transducer is weakly coupled and then integrating the Green's function of the structure over the area of the transducer. The majority of guided wave modeling is based on two-dimensional (2D) formulations where plane, straight-crested waves are modeled. Several techniques can be readily applied to obtain the solution to the forced 2D problem in terms of modal amplitudes. However, for transducer modeling it is desirable to obtain the complete three-dimensional (3D) field, which is particularly challenging in anisotropic materials. In this paper, a technique for obtaining a far-field asymptotic solution to the 3D Green's function in terms of the modal solutions to the forced 2D problem is presented. Results are shown that illustrate the application of the technique to isotropic (aluminium) and anisotropic (cross-ply and unidirectional composite) plates. Where possible, results from the asymptotic model are compared to those from 3D time-marching finite element simulations and good agreement is demonstrated. (c) 2007 Acoustical Society of America.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据