4.8 Article

Deformation-driven electrical transport of individual boron nitride nanotubes

向作者/读者索取更多资源

In contrast to standard metallic or semiconducting graphitic carbon nanotubes, for years their structural analogs, boron nitride nanotubes, in which alternating boron and nitrogen atoms substitute for carbon atoms in a graphitic network, have been considered to be truly electrically insulating due to a wide band gap of layered BN. Alternatively, here, we show that under in situ elastic bending deformation at room temperature inside a 300 kV high-resolution transmission electron microscope, a normally electrically insulating multiwalled BN nanotube may surprisingly transform to a semiconductor. The semiconducting parameters of bent multiwalled BN nanotubes squeezed between two approaching gold contacts inside the pole piece of the microscope have been retrieved based on the experimentally recorded I-V curves. In addition, the first experimental signs suggestive of piezoelectric behavior in deformed BN nanotubes have been observed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据