4.6 Article

Synthesis of DOTA-conjugated multivalent cyclic-RGD peptide dendrimers via 1,3-dipolar cycloaddition and their biological evaluation: implications for tumor targeting and tumor imaging purposes

期刊

ORGANIC & BIOMOLECULAR CHEMISTRY
卷 5, 期 6, 页码 935-944

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b615940k

关键词

-

向作者/读者索取更多资源

This report describes the design and synthesis of a series of alpha(V)beta(3) integrin-directed monomeric, dimeric and tetrameric cyclo[Arg-Gly-Asp-D-Phe-Lys] dendrimers using click chemistry. It was found that the unprotected N-epsilon-azido derivative of cyclo[Arg-Gly-Asp-D-Phe-Lys] underwent a highly chemoselective conjugation to amino acid-based dendrimers bearing terminal alkynes using a microwave-assisted Cu(I)-catalyzed 1,3-dipolar cycloaddition. The alpha(V)beta(3) binding characteristics of the dendrimers were determined in vitro and their in vivo alpha(V)beta(3) targeting properties were assessed in nude mice with subcutaneously growing human SK-RC-52 tumors. The multivalent RGD-dendrimers were found to have enhanced affinity toward the alpha(V)beta(3) integrin receptor as compared to the monomeric derivative as determined in an in vitro binding assay. In case of the DOTA-conjugated In-111-labeled RGD-dendrimers, it was found that the radiolabeled multimeric dendrimers showed specifically enhanced uptake in alpha(V)beta(3) integrin expressing tumors in vivo. These studies showed that the tetrameric RGD-dendrimer had better tumor targeting properties than its dimeric and monomeric congeners.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据