4.5 Article

Is hippocampal atrophy a future drug target?

期刊

MEDICAL HYPOTHESES
卷 68, 期 6, 页码 1300-1306

出版社

CHURCHILL LIVINGSTONE
DOI: 10.1016/j.mehy.2006.09.040

关键词

-

向作者/读者索取更多资源

Hippocampus is the brain structure, vital for episodic and declarative memory. Atrophy of the human hippocampus is seen in a variety of psychiatric and neurological disorders e.g. recurrent depression, schizophrenia, bipolar disorder, post-traumatic stress disorder, epilepsy, head injury, and Alzheimer's disease (AD). Importantly, aging hippocampus also undergoes atrophy. In many instances, for example, AD, the atrophy precedes the development of symptoms while in others, there is a temporal relationship between atrophy and symptomatology. The presence of atrophied hippocampus is one of the most consistent features of many common psychiatric disorders. Several factors contribute to this atrophy. Stress is one of the most profound factors implicated and the mechanisms involve glucocorticoids, serotonin, excitatory amino acids etc. Hippocampal formation as a whole can undergo atrophy or its individual structural components e.g. apical dendrities can exhibit atrophy. Several drugs of unrelated classes have been shown to prevent atrophy indicating heterogenous manner in which hippocampal atrophy is produced. These include, tianeptine (affects structural plasticity in hippocampus and is an effective antidepressant); phenytoin (antiseizure and neuroprotective); fluoxetine (downregulates neurodegenerative enzyme and increases neuroprotective hippocampal S100beta); lithium (neu ro protective and antiapoptotic); tricyclic antidepressants (increase hippocampal. neurogenesis); antipsychotics (reduce hippocampal neuronal suppression); sodium valproate (increases neurogenesis) and mifepristone (antioxidant, neuroprotective and anti-glucocorticoid). Now the most important question is: to what extent does the hippocampal atrophy play a role in the genesis of symptoms of diseases or their progression? And if it does, can we achieve the same degree of prevention or reversal seen in experimental animals, in humans also. An even more important question is: whether the prevention of atrophy would be clinically useful in affecting disease, viz slowing its progression, reducing morbidity, complications or positively affecting the outcome of one or more of its clinically important aspects. If the answer to this is yes, we would have to know at what stage of the disease we use the drugs, dose, duration, follow-up and efficacy. The use of these drugs in the above mentioned conditions can not only test the potential of atrophy as a future drug target, but could also help in Learning more about the hippocampus in both health and diseases. 0 2006 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据