4.6 Article

Accurate quantum-chemical calculations using Gaussian-type geminal and Gaussian-type orbital basis sets: applications to atoms and diatomics

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 9, 期 24, 页码 3112-3126

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b616488a

关键词

-

向作者/读者索取更多资源

We have implemented the use of mixed basis sets of Gaussian one- and two-electron (geminal) functions for the calculation of second-order Moller-Plesset (MP2) correlation energies. In this paper, we describe some aspects of this implementation, including different forms chosen for the pair functions. Computational results are presented for some closed-shell atoms and diatomics. Our calculations indicate that the method presented is capable of yielding highly accurate second-order correlation energies with rather modest Gaussian orbital basis sets, providing an alternative route to highly accurate wave functions. For the neon atom, the hydrogen molecule, and the hydrogen fluoride molecule, our calculations yield the most accurate MP2 energies published so far. A critical comparison is made with established MP2-R12 methods, revealing an erratic behaviour of some of these methods, even in large basis sets.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据