4.5 Article

Involvement of miR-133a and miR-326 in ADM resistance of HepG2 through modulating expression of ABCC1

期刊

JOURNAL OF DRUG TARGETING
卷 23, 期 6, 页码 519-524

出版社

TAYLOR & FRANCIS LTD
DOI: 10.3109/1061186X.2015.1015536

关键词

ABCC1; adriamycin; hepatocellular carcinoma; microRNA

资金

  1. National Natural Science Foundation of China [81372579]
  2. Department of Science and Technology of Hunan province, China [2012FJ2016]
  3. Open Fund Based on Innovation Platform of Hunan Colleges and Universities, China [13K084]
  4. Construction Projects of Provincial Key Disciplines

向作者/读者索取更多资源

Recent studies have shown that a class of small, functional RNAs, named microRNAs, may regulate multidrug resistance-associated protein 1 (ABCC1). Since ABCC1 is an important efflux transporter responsible for cellular drug disposition, the discovery of microRNAs (miRNA) brings an idea that there may be some other unknown multidrug resistance (MDR) mechanisms exist. Using computational programs, we predicted that the 3'untranslated region (3'UTR) of ABCC1 contains a potential miRNA binding site for miR-133a and also two other for miR-326. These binding sites were confirmed by luciferase reporter assay. ABCC1 mRNA degradation was accelerated dramatically in cells transfected with miR-133a or miR-326 mimics using qRT-PCR, Furthermore, western blot analysis indicated that ABCC1 protein expression was significantly down-regulated in hepatocellular carcinoma cells line HepG2 after transfection with miR-133a or miR-326 mimics, suggesting the involvement of mRNA degradation and protein expression mechanism. The effects of the two miRNAs on adriamycin (ADM) sensitivity to HepG2 cells were determined by MTT assay. Compared with mock transfection, miR-133a or miR-326 mimics transfection sensitized these cells to ADM. These findings for the first time demonstrated that the involvement of miR-133a and miR-326 in MDR is mediated by ABCC1 in hepatocellular carcinoma cell line HepG2 and suggested that miR-133a and miR-326 may be efficient agents for preventing and reversing ADM resistance in cancer cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据