4.6 Article

Inner-shell spectroscopy by the Gaussian and augmented plane wave method

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 9, 期 13, 页码 1599-1610

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b615522g

关键词

-

向作者/读者索取更多资源

We present an approach for calculating near-edge X-ray absorption spectra at the density functional theory level, which is suited for condensed matter simulations. The method is based on the standard solution of the all-electron KS equations with a modified core-hole potential, which reproduces the relaxation of the orbitals induced by the promotion of the core electron to an unoccupied valence level. The all-electron description of the charge density is based on the Gaussian and augmented plane wave formalism. The reliability of the proposed method is assessed by comparing the computed spectra of some small molecules in the gas phase to the experimental spectra reported in literature. The sensitivity of the computed spectra to the local environment, i.e. the specific bonds formed by the absorbing atom or the presence of hydrogen bonds, open promising perspective for this technique as a predictive tool in the investigation of a more complex system of an unknown structure. The straightforward extension of the method to condensed matter is demonstrated by the calculation of the C K-edge in diamond.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据