4.5 Article

Feeding, fins and braking maneuvers: locomotion during prey capture in centrarchid fishes

期刊

JOURNAL OF EXPERIMENTAL BIOLOGY
卷 210, 期 1, 页码 107-117

出版社

COMPANY OF BIOLOGISTS LTD
DOI: 10.1242/jeb.02634

关键词

kinematics; braking; swimming; locomotion; prey capture; pectoral fin; anal fin; caudal fin; maneuvering; deceleration; suction; feeding; ram speed; accuracy

类别

向作者/读者索取更多资源

Locomotion is an integral aspect of the prey capture strategy of almost every predatory animal. For fishes that employ suction to draw prey into their mouths, locomotor movements are vital for the correct positioning of the mouth relative to the prey item. Despite this, little is known regarding the relationships between locomotor movements and prey capture. To gain insights into how fishes move during prey capture and the mechanisms underlying deceleration during prey capture, I measured the fin and body movements of largemouth bass, Micropterus salmoides, and bluegill sunfish, Lepomis macrochirus. Using a high-speed video camera (500 frames s(-1)), I captured locomotor and feeding movements in lateral and ventral (via a mirror) view. Largemouth bass swam considerably faster than bluegill during the approach to the prey item, and both species decelerated substantially following prey capture. The mean magnitude of deceleration was significantly higher in largemouth bass (-1089 cm s(-2)) than bluegill (-235 cm s(-2)), and the timing of maximum deceleration was much later for largemouth bass (30.3 ms after maximum gape) than bluegill (6.7 ms after maximum gape). Both species employed their pectoral, anal and caudal fins in order to decelerate during prey capture. However, largemouth bass protracted their pectoral fins more and faster, likely contributing to the greater magnitude of deceleration in the species. The primary mechanism for increased deceleration was an increase in approach speed. The drag forces experienced by the fins and body are proportional to the velocity of the flow squared. Thus, the braking forces exerted by fins, without any change in kinematics, will increase exponentially with small increases in swimming speed, perhaps allowing these fishes to achieve higher braking forces at higher swimming speeds without altering body or fin kinematics. This result can likely be extended to other maneuvers such as turning.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据