4.6 Article

Direct electron transfer in nanostructured sol-gel electrodes containing bilirubin oxidase

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 9, 期 15, 页码 1809-1814

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b618422g

关键词

-

向作者/读者索取更多资源

Bilirubin oxidase encapsulated within a silica sol-gel/carbon nanotube composite electrode effectively catalyzed the reduction of molecular oxygen into water through direct electron transfer at the carbon nanotube electrode surface. In this nanocomposite approach, the silica matrix is designed to be sufficiently porous for substrate molecules to have access to the enzyme and yet provides a protective cage for immobilization without affecting biological activity. The incorporation of carbon nanotubes adds electrical connectivity and increases active electrode surface area. The standard surface electron transfer rate constant was calculated to be 59 s(-1) which indicates that the carbon nanotube side walls are primarily responsible for electron transfer. The use of direct electron transfer processes simplifies biofuel cell fabrication by eliminating the need for redox mediator and ion-conducting separators.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据