4.6 Review

Interfacial bridge-mediated electron transfer: mechanistic analysis based on electrochemical kinetics and theoretical modelling

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 9, 期 5, 页码 555-572

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b611448b

关键词

-

向作者/读者索取更多资源

Understanding the physical and chemical factors that control the kinetics of interfacial electrontransfer ( ET) reactions is important for a large number of technological applications. The present article describes electrochemical kinetic studies of these factors, in which standard interfacial ET rate constants (k(0)(l)) have been measured for ET between substrate Au electrodes and various redox couples attached to the electrode surfaces by variable lengths (l) of oligomethylene (OM), oligophenylenevinylene (OPV) and oligophenyleneethynylene (OPE) bridges, which were constituents of mixed self-assembled monolayers (SAMs). The k(0)(l) measurements employed the indirect laser-induced temperature jump (ILIT) technique, which permits the measurement of interfacial ET rates that are orders of magnitude faster than those measurable by conventional techniques using the macroelectrodes that are the most convenient substrates for the mixed SAMs. The robustness of the measured rate constants (k(0)(l)), together with the Arrhenius activation energies (E-a(l)) and preexponential factors (A(l)), is demonstrated by their invariance with respect to several experimental system parameters (including the chemical nature and length of the diluent component of the mixed SAM). Analysis of the kinetic results demonstrates that all of the observed interfacial ET processes proceed through a common type of transition state (predominantly associated with solvent reorganization around the redox moiety) and that the actual ET step involves direct electronic tunnelling between the Au electrode and the redox moiety. However, for the full range of l investigated, a global exponential decay of A(l) is not found for any of the three types of bridges. Possible reasons for this behavior, including the role of rate determining steps associated with adiabatic mechanisms within or beyond the transition state theory framework, are discussed, and comparisons with related conductance measurements are presented.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据