4.6 Article

Structures and energetics of 98 atom Pd-Pt nanoalloys: potential stability of the Leary tetrahedron for bimetallic nanoparticles

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 9, 期 38, 页码 5202-5208

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b707136a

关键词

-

向作者/读者索取更多资源

The energetics of 98 atom bimetallic Pd-Pt clusters are studied using a combination of: a genetic algorithm technique (to explore vast areas of the configurational space); a basin-hopping atom-exchange routine (to search for lowest-energy homotops at fixed composition); and a shell optimisation approach (to search for high symmetry isomers). The interatomic interactions between Pd and Pt are modelled by the Gupta many-body empirical potential. For most compositions, the putative global minima are found to have structures based on defective Marks decahedra, but in the composition range from Pd46Pt52 to Pd63Pt35, the Leary tetrahedron (LT)-a structure previously identified for 98 atom Lennard-Jones clusters-is consistently found as the most stable structure. Based on the excess energy stability criterion, Pd56Pt42 represents the most stable cluster across the entire composition range. This structure, a T-d-symmetry LT, exhibits multi-layer segregation with an innermost core of Pd atoms, an intermediate layer of Pt atoms and an outermost Pd surface shell (Pd-Pt-Pd). The stability of the Leary tetrahedron is compared against other low-energy competing structural motifs: the Marks decahedron (Dh-M), a quasi'' tetrahedron (a closed-packed structure) and two other closed-packed structures. The stability of LT structures is rationalized in terms of their spherical shape and the large number of nearest neighbours.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据