4.7 Article

An inflammatory arthritis-associated metabolite biomarker pattern revealed by H-1 NMR Spectroscopy

期刊

JOURNAL OF PROTEOME RESEARCH
卷 6, 期 9, 页码 3456-3464

出版社

AMER CHEMICAL SOC
DOI: 10.1021/pr070123j

关键词

metabolite profiling; metabolomics; rheumatoid arthritis; K/BxN mice; inflammatory arthritis

向作者/读者索取更多资源

Rheumatoid arthritis, a debilitating, systemic inflammatory joint disease, is likely accompanied by alterations in circulating metabolites. Here, an H-1 NMR s pectrosco py- based metabolomics approach was developed to establish a metabolic 'biomarker pattern' in a model of rheumatoid arthritis, the K/BxN transgenic mouse. Sera obtained from arthritic K/BxN mice (N = 15) and a control population (N = 19) having the same genetic background, but lacking the arthritogenic T-cell receptor KRN transgene, were compared by 1H NMR spectroscopy. A unique method was developed by combining technologies such as ultrafiltration to remove proteins from serum samples, quantitative 'targeted profiling' of known metabolites, pseudo-quantitative profiling of unknown resonances, a supervised O-PLS-DA pattern recognition analysis, and a metabolic-pathway based network analysis for interpretation of results. In total, 88 spectral features were profiled (59 metabolites and 28 unknown resonances). A highly significant subset of 18 spectral features (15 known compounds and 3 unknown resonances) was identified (p = 0.00075 using MANOVA) that we term a 'metabolic bioprofile'. We identified metabolites relating to nucleic acid, amino acid, and fatty acid metabolism, as well as lipolysis, reactive oxygen species generation, and methylation. Pathway analysis suggested a shift from metabolites involved in numerous reactions (hub-metabolites) toward intermediates and metabolic endpoints associated with arthritis. The results attest to the metabolic complexity of systemic inflammation and to the power of the experimental approach for identifying a wide variety of disease-associated marker candidates. The diagnostic and prognostic implications of monitoring a spectrum of metabolic events simultaneously using serum samples is discussed with respect to the potential for individualized medicine.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据