4.7 Article

Encapsulation of paclitaxel in macromolecular nanoshells

期刊

BIOMACROMOLECULES
卷 8, 期 6, 页码 2004-2010

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bm070177m

关键词

-

向作者/读者索取更多资源

An electrostatic layer-by-layer self-assembly technique was used to encapsulate solid core paclitaxel nanoparticles within a polymeric nanometer-scale shell. This approach provides a new strategy for the development of polymeric vehicles that control drug release and target diseased tissues and cells specific to the ailment, such as breast cancer. Core paclitaxel nanoparticles, 153 +/- 28 nm in diameter, were prepared using a modified nanoprecipitation technique. A nanoshell composed of multilayered polyelectrolytes, poly(allylamine hydrochloride) and poly(styrene-4-sulfonate) was assembled stepwise onto core charged drug nanoparticles. In vitro studies were performed to determine the anticancer activity of paclitaxel core-shell nanoparticles. Paclitaxel core-shell nanoparticles induced cell cycle arrest in the G2/M phase after 24 and 48 h of incubation with a human breast carcinoma cell line, MCF-7. Changes in MCF-7 cell morphology, fragmentation of the nucleus, and loss of cell-cell contacts indicated that the cells responded to paclitaxel core nanoparticles upon treatment for 24 and 48 h. Cells arrested in G2/M phase illustrated abnormal microtubule and actin cytoskeleton morphology. The core-shell drug nanoparticles fabricated using this procedure provide a new approach in the delivery of paclitaxel devoid of Cremophor EL, a solvent that causes adverse side effects in patients undergoing chemotherapy for treatment of metastasized mammary cancers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据