4.7 Article

Mineral proximity influences mechanical response of proteins in biological mineral-protein hybrid systems

期刊

BIOMACROMOLECULES
卷 8, 期 3, 页码 851-856

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bm060942h

关键词

-

向作者/读者索取更多资源

The organic phase of nacre, which is composed primarily of proteins, has an extremely high elastic modulus as compared to that of bulk proteins, and also undergoes large deformation before failure. One reason for this unusually high modulus could be the mineral-organic interactions. In this work, we elucidate the specific role of mineral proximity on the structural response of proteins in biological structural composites such as nacre through molecular modeling. The glycine-serine domain of a nacre protein Lustrin A has been used as a model system. It is found that the amount of work needed to unfold is significantly higher when the GS domain is pulled in the proximity of aragonite. These results indicate that the proximity of aragonite has a significant effect on the unfolding mechanisms of proteins when pulled. These results will provide very useful information in designing synthetic biocomposites, as well as further our understanding of mechanical response in structural composites in nature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据