4.7 Article

Importance of molecular shape for the overall stability of hydrogen bond motifs in the crystal structures of various carbamazepine-type drug molecules

期刊

CRYSTAL GROWTH & DESIGN
卷 7, 期 1, 页码 100-107

出版社

AMER CHEMICAL SOC
DOI: 10.1021/cg060504u

关键词

-

向作者/读者索取更多资源

Carbamazepine, a first generation anticonvulsant, is known to crystallize in various polymorphic forms, all of which exhibit an anti-carboxamide hydrogen bond dimer motif. Furthermore, unless cocrystallized with carboxylic acids, these dimers are also present in most crystal structures of the known carbamazepine solvates. On the other hand, two derivatives of the drug (oxcarbazepine and 10,11-dihydrocarbamazepine) have been reported to adopt hydrogen bond chain motifs in their crystal structures, whereas the epoxy derivative (10,11-epoxycarbamazepine) shows a third mode of hydrogen bonding, syn-dimers. In order to rationalize the differences in hydrogen bonding caused by the small changes in molecular structure, computational searches for the low-energy crystal structures of these drugs were performed and hydrogen bond patterns in both the hypothetical and experimentally determined crystal structures were analyzed. In addition, interaction energies between pairs of molecules were calculated using the SCDS-PIXEL approach, which partitions the intermolecular interaction energy into its different contributions (Coulombic, polarization, dispersion, and repulsion). The importance of overall molecular shape and the influence that this has on the hydrogen bond arrangements in these structures is emphasized.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据