4.5 Article

Theoretical model and experimental study of red blood cell (RBC) deformation in microchannels

期刊

JOURNAL OF BIOMECHANICS
卷 40, 期 9, 页码 2088-2095

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jbiomech.2006.10.004

关键词

RBC; microchannel; deformation; rheoscope; ektacytometer

向作者/读者索取更多资源

The motion and deformation of red blood cells (RBCs) flowing in a microchannel were studied using a theoretical model and a novel automated rheoscope. The theoretical model was developed to predict the cells deformation under shear as a function of the cells geometry and mechanical properties. Fluid dynamics and membrane mechanics are incorporated, calculating the traction and deformation in an iterative manner. The model was utilized to evaluate the effect of different biophysical parameters, such as: inner cell viscosity, membrane shear modulus and surface to volume ratio on deformation measurements. The experimental system enables the measurement of individual RBCs velocity and their deformation at defined planes within the microchannel. Good agreement was observed between the simulation results, the rheoscope measurements and published ektacytometry results. The theoretical model results imply that such deformability measuring techniques are weakly influenced by changes in the inner viscosity of the cell or the ambient fluid viscosity. However, these measurements are highly sensitive to RBC shear modulus. The shear modulus, estimated by the model and the rheoscope measurements, falls between the values obtained by micropipette aspiration and laser trapping. The study demonstrates the integration of a theoretical model with a microfabricated device in order to achieve a better understanding of RBC mechanics and their measurement using microfluidic shear assays. The system and the model have the potential of serving as quantitative clinical tools for diagnosing deformability disorders in RBCs. (C) 2006 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据