4.5 Article

The neuromuscular demands of toe walking: A forward dynamics simulation analysis

期刊

JOURNAL OF BIOMECHANICS
卷 40, 期 6, 页码 1293-1300

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jbiomech.2006.05.022

关键词

musculoskeletal modeling; equinus gait; intrinsic muscle properties; muscle force

向作者/读者索取更多资源

Toe walking is a gait deviation with multiple etiologies and often associated with premature and prolonged ankle plantar flexor electromyographic activity. The goal of this study was to use a detailed musculoskeletal model and forward dynamical simulations that emulate able-bodied toe and heel-toe walking to understand why, despite an increase in muscle activity in the ankle plantar flexors during toe walking, the internal ankle joint moment decreases relative to heel-toe walking. The simulations were analyzed to assess the force generating capacity of the plantar flexors by examining each muscle's contractile state (i.e., the muscle fiber length, velocity and activation). Consistent with experimental measurements, the simulation data showed that despite a 122% increase in soleus muscle activity and a 76% increase in gastrocnemius activity, the peak internal ankle moment in late stance decreased. The decrease was attributed to non-optimal contractile conditions for the plantar flexors (primarily the force-length relationship) that reduced their ability to generate force. As a result, greater muscle activity is needed during toe walking to produce a given muscle force level. In addition, toe walking requires greater sustained plantar flexor force and moment generation during stance. Thus, even though toe walking requires lower peak plantar flexor forces that might suggest a compensator), advantage for those with plantar flexor weakness, greater neuromuscular demand is placed on those muscles. Therefore, medical decisions concerning whether to reduce equinus should consider not only the impact on the ankle moment, but also the expected change to the plantar flexor's force generating capacity. (c) 2006 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据